
Solution to Problems ♠–6

Problem A: Find the greatest lower and the least upper bounds of
the set {(n+ 1)2

2n
: n ∈ N

}
.

Answer: First we are going to show the following three observations.

Claim A For every real number x ≥ 4 we have

(x+ 1)3 ≤ 2x3.

Proof of the Claim. Let f(x) = (x + 1)3 and g(x) = 2x3 for x ∈ R.
Clearly f ′(x) = 3(x+ 1)2 and g′(x) = 6x2. Also

(1) f(4) = 125 < 128 = g(4), and
(2) f ′(x) < g′(x) for x ≥ 4 > 1 +

√
2.

Therefore f(x) < g(x) for all x ≥ 4 and our Claim easily follows. �

Claim B For every natural number n ≥ 11 we have

(n+ 1)3 < 2n.

Proof of the Claim. We show our Claim by induction on n ≥ 11. Let
P (n) be the assertion that the inequality holds for n and let us verify
that the assumptions of the Theorem on Mathematical induction are
satisfied by the formula P (n).
Basic Step n = 11
By direct computation we check that (11 + 1)3 = 1728 < 2048 = 211,
so P (11) holds true indeed.
Inductive Step Let n ≥ 11 and let us assume that P (n) holds true,
that is we assume

(∗)n (n+ 1)3 < 2n.

We want to derive that then P (n + 1) is true. Using Claim A (for
x = n+ 1)) and then (∗)n we get(

(n+ 1) + 1
)3
≤ 2 · (n+ 1)3 < 2 · 2n = 2n+1.

Consequently, P (n+ 1) holds true.
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Thus the assumptions of the Theorem on Mathematical Induction
are satisfied and we may conclude that (∀n ≥ 11) P (n), as desired. �

Claim C For every natural number n ≥ 6 we have

(n+ 1)2 < 2n.

Proof of the Claim. We show our Claim by induction on n ≥ 6. Let
P (n) be the assertion that the inequality holds for n and let us verify
that the assumptions of the Theorem on Mathematical induction are
satisfied by the formula P (n).
Basic Step n = 6
By direct computation we check that (6 + 1)2 = 49 < 64 = 26, so P (6)
holds true indeed.
Inductive Step Let n ≥ 6 and let us assume that P (n) holds true,
that is we assume

(∗∗)n (n+ 1)2 < 2n.

We want to derive that then P (n + 1) is true. For this we note that
for all n ≥ 6 we have 2(n+ 2) < 2n. Now, using (∗∗)n, we get(

(n+1)+1
)2

= (n+1)2+2(n+1)+1 < 2n+2(n+2) < 2n+2n = 2n+1.

Consequently, P (n+ 1) holds true.
Thus the assumptions of the Theorem on Mathematical Induction

are satisfied and we may conclude that (∀n ≥ 6) P (n), as desired. �

It follows from Claim B that

0 <
(n+ 1)2

2n
<

(n+ 1)2

(n+ 1)3
=

1

(n+ 1)
for all n ≥ 11.

Therefore 0 is the greatest lower bound of our set.
By Claim C we know that

(n+ 1)2

2n
< 1 for all n ≥ 6.

The numbers 2, 9
4
, 25
16
, 36
32

(greater than 1) also belong to our set. Thus

the least upper bound of the set is 9
4
.
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Problem B: Show that for any irrational number α and for any pos-
itive integer n there exist a positive integer qn and an integer pn such
that ∣∣∣α− pn

qn

∣∣∣ < 1

nqn
.

Answer: Fix a natural number n and consider the n+1 real numbers

0, α− bαc, 2α− b2αc, . . . , nα− bnαc.
Since α is irrational, these numbers must be distinct. Each of these

numbers belongs to the interval [0, 1). Since the n intervals
[
j
n
, j+1

n

)
,

j = 0, 1, . . . , n − 1 cover [0, 1), there must be one which contains at
least two of these points, say n1α − bn1αc and n2α − bn2αc with 0 ≤
n1 < n2 ≤ n. So ∣∣∣n2α− bn2αc − n1α + bn1αc

∣∣∣ < 1

n
and dividing both sides of the inequality by n2 − n1 > 0 we get∣∣∣α− bn2αc − bn1αc

n2 − n1

∣∣∣ < 1

n(n2 − n1)
.

Thus it is enough to take qn = n2 − n1 and pn = bn2αc − bn1αc.
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