Solution to Problems $\oint -6$

Problem A: Find the greatest lower and the least upper bounds of the set

$$\Big\{\frac{(n+1)^2}{2^n}: n \in \mathbb{N}\Big\}.$$

Answer: First we are going to show the following three observations.

Claim A For every real number $x \ge 4$ we have $(x+1)^3 \le 2x^3$.

Proof of the Claim. Let $f(x) = (x+1)^3$ and $g(x) = 2x^3$ for $x \in \mathbb{R}$. Clearly $f'(x) = 3(x+1)^2$ and $g'(x) = 6x^2$. Also

(1) f(4) = 125 < 128 = g(4), and

(2) f'(x) < g'(x) for $x \ge 4 > 1 + \sqrt{2}$.

Therefore f(x) < g(x) for all $x \ge 4$ and our Claim easily follows. \Box

Claim B For every natural number $n \ge 11$ we have

$$(n+1)^3 < 2^n.$$

Proof of the Claim. We show our Claim by induction on $n \ge 11$. Let P(n) be the assertion that the inequality holds for n and let us verify that the assumptions of the Theorem on Mathematical induction are satisfied by the formula P(n).

Basic Step n = 11

By direct computation we check that $(11+1)^3 = 1728 < 2048 = 2^{11}$, so P(11) holds true indeed.

Inductive Step Let $n \ge 11$ and let us assume that P(n) holds true, that is we assume

 $(*)^n (n+1)^3 < 2^n.$

We want to derive that then P(n + 1) is true. Using Claim A (for x = n + 1)) and then $(*)^n$ we get

$$((n+1)+1)^3 \le 2 \cdot (n+1)^3 < 2 \cdot 2^n = 2^{n+1}.$$

Consequently, P(n+1) holds true.

Thus the assumptions of the Theorem on Mathematical Induction are satisfied and we may conclude that $(\forall n \ge 11) P(n)$, as desired. \Box

Claim C For every natural number $n \ge 6$ we have

$$(n+1)^2 < 2^n.$$

Proof of the Claim. We show our Claim by induction on $n \ge 6$. Let P(n) be the assertion that the inequality holds for n and let us verify that the assumptions of the Theorem on Mathematical induction are satisfied by the formula P(n).

Basic Step n = 6

By direct computation we check that $(6+1)^2 = 49 < 64 = 2^6$, so P(6) holds true indeed.

Inductive Step Let $n \ge 6$ and let us assume that P(n) holds true, that is we assume

$$(**)^n (n+1)^2 < 2^n.$$

We want to derive that then P(n + 1) is true. For this we note that for all $n \ge 6$ we have $2(n + 2) < 2^n$. Now, using $(**)^n$, we get

$$\left((n+1)+1\right)^2 = (n+1)^2 + 2(n+1) + 1 < 2^n + 2(n+2) < 2^n + 2^n = 2^{n+1}.$$

Consequently, P(n+1) holds true.

Thus the assumptions of the Theorem on Mathematical Induction are satisfied and we may conclude that $(\forall n \ge 6) P(n)$, as desired. \Box

It follows from Claim B that

$$0 < \frac{(n+1)^2}{2^n} < \frac{(n+1)^2}{(n+1)^3} = \frac{1}{(n+1)} \quad \text{for all } n \ge 11.$$

Therefore 0 is the greatest lower bound of our set.

By Claim C we know that

$$\frac{(n+1)^2}{2^n} < 1 \quad \text{for all } n \ge 6.$$

The numbers $2, \frac{9}{4}, \frac{25}{16}, \frac{36}{32}$ (greater than 1) also belong to our set. Thus the least upper bound of the set is $\frac{9}{4}$.

Correct solution were received from : (1) Brad Tuttle

POW 6A: 🏟

Problem B: Show that for any irrational number α and for any positive integer n there exist a positive integer q_n and an integer p_n such that

$$\left|\alpha - \frac{p_n}{q_n}\right| < \frac{1}{nq_n}.$$

Answer: Fix a natural number n and consider the n+1 real numbers

$$0, \ \alpha - \lfloor \alpha \rfloor, \ 2\alpha - \lfloor 2\alpha \rfloor, \ \dots, \ n\alpha - \lfloor n\alpha \rfloor.$$

Since α is irrational, these numbers must be distinct. Each of these numbers belongs to the interval [0, 1). Since the *n* intervals $\left[\frac{j}{n}, \frac{j+1}{n}\right)$, $j = 0, 1, \ldots, n-1$ cover [0, 1), there must be one which contains at least two of these points, say $n_1\alpha - \lfloor n_1\alpha \rfloor$ and $n_2\alpha - \lfloor n_2\alpha \rfloor$ with $0 \le n_1 < n_2 \le n$. So

$$\left|n_{2}\alpha - \lfloor n_{2}\alpha \rfloor - n_{1}\alpha + \lfloor n_{1}\alpha \rfloor\right| < \frac{1}{n}$$

and dividing both sides of the inequality by $n_2 - n_1 > 0$ we get

$$\left|\alpha - \frac{\lfloor n_2 \alpha \rfloor - \lfloor n_1 \alpha \rfloor}{n_2 - n_1}\right| < \frac{1}{n(n_2 - n_1)}.$$

Thus it is enough to take $q_n = n_2 - n_1$ and $p_n = \lfloor n_2 \alpha \rfloor - \lfloor n_1 \alpha \rfloor$.

Correct solution were received from :

(1) Brad Tuttle